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Efficient perovskite LEDs with tailored atomic layer
number emission at fixed wavelengths

Ligang Wang1’2’3’4*1', ZherYing Ooi’t, Feng-Yan Jia’t, Yuqi Sun?, Yun Liu?5, Linjie Dai?, Junzhi Ye?,
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, Tianjun Liu?, Huanping Zhou'*,
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Colloidal quantum dots (QDs) have illuminated computer monitors and television screens due to their fascinating
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color-tunable properties depending on the size. Here, the electroluminescence (EL) wavelength of perovskite
LEDs was tuned via the atomic layer number (ALN) of nanoplates (NPs) instead of the “size” in conventional QDs.
We demonstrated efficient LEDs with controllably tailored emission from n = 3, 4, 5, and >7 ALN perovskite NPs
with specific and discrete major peaks at 607, 638, 669, and 728 nanometers. These LEDs demonstrated peak ex-
ternal quantum efficiency (EQE) of 26.8% and high wavelength reproducibility with less than 1 to 2 nm difference
between batches. High color stability without observable EL spectral change and operating stability with the best
Tso of 267 minutes at 1.0 milliampere per square centimeter was also achieved. This work demonstrates a concept
of tailoring specific ALN emission with fixed wavelengths, shedding light on efficient, emission-discrete, and

color-stable LEDs for next-generation display.

INTRODUCTION

Quantum dot (QDs) are excellent light emitters for high-definition
displays since the first demonstration in the early 1980s with the
Chemistry Nobel Prize in 2023 awarded to the first pioneers (1-3).
Ultrahigh quantum efficiency, simplicity of synthesis, and easy tun-
ability of optical properties render perovskite nanoplates (NPs)
promising materials for light-emitting diodes (LEDs) since the first
demonstration of perovskite LEDs in 2014 (4). Extensive efforts
have produced state-of-the-art perovskite NP LEDs with more than
20% external quantum efficiency (EQE) both in green and red emis-
sion ranges (table S1) (5-29). The wider tunability of wavelength
and sharper emission provide a wider color gamut to restore natural
colors and make the LED screens more vivid. It can also offer pos-
sibilities to meet the standards for different purposes and achieve
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higher photopic luminance due to the photopic sensitivity of hu-
mans reaching the peak at 555 nm (fig. S1).

The strategy of tuning the color of conventional QDs was achieved
via size control which relies on synthesis conditions such as precur-
sor composition, reaction temperature/time, and ligand type/ratio
(23, 30-32). Furthermore, the mixed-halide strategy has been widely
used for emission wavelength tuning in perovskite LEDs (10, 33-36),
and this strategy can provide large and continuous emission wave-
length tunability covering from deep blue to infrared range (8, 37, 38).
However, mixed halide perovskite materials always suffer from color
instabilities due to halide segregation under photoexcitation or elec-
troluminescent operation (10, 39-41).

Although it is widely known that the bandgap/emission wave-
length changes as layer of QDs increases, to the best of our
knowledge, there are still no available reports demonstrating effec-
tive methods for tailoring electroluminescence (EL) from emitters
with specific integer layers of atoms and achieving high efficiency at
the same time in optoelectronic field (42-44). Differing from size
control in conventional QDs and the mixed halide in perovskite
strategies demonstrating continuous wavelength turnability, the
emission of these NP LEDs relies on the number of atomic unit cell
monolayers [PbX,] (also defined as n-phase). This feature makes
the wavelength of emission specific and discrete, similar to discrete
energy levels in atoms. Moreover, the fixed feature can make the
emission wavelength of LEDs highly reproducible due to the wave-
length relying on the atomic layer number (ALN) rather than size
or composition which is more susceptible to preparation conditions.
Furthermore, Forster resonance energy transfer (FRET) and charge
transfer (CT) are generally proposed to be responsible for the ener-
gy funneling in multiphase perovskite LEDs (45-47). However, the
exact mechanism and the difference of energy funneling in PL and
EL, which are important for reasonable design of LEDs, are still
strongly debated and remain to be revealed, especially in the NP
system which can be different from the conventional bulk quasi-
two-dimensional (2D) perovskites.
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RESULTS Synthesis of NPs and method for tailoring EL

LEDs with tailored ALN emission The FEPS method provides a concept for the synthesis of perovskite
Discrete n = 3, 4, 5, and >7 ALN emission with peaks at ~607, 638, nanomaterials (NMs; including nanocrystals or NPs; comparison
669, and 728 nm was achieved in MAPbI; [methylammonium  with previous methods is in table S2), which is much simplified and
(MA)] NP-based LEDs. The major EL peaks of these LEDs are high-  relies on “environmentally green” precursors. In a typical synthesis
ly fixed and demonstrate high reproducibility with ~1- to 2-nm dif-  process (Fig. 1D, table S3, and movie S1), A-site cation halide [AX,
ference from the central wavelength between batches (Fig. 1, Ato C;  e.g., MA iodide (MAI)] dissolved in polar solvent [e.g., H,O and
figs. S2 and S3; and Table 1). The n = 4 LEDs could be prepared by  alcohols such as methanol (MeOH), ethanol (EtOH), n-butanol (n-
different alcohols and demonstrated extensive preparation condi- BuOH), and isopropanol (IPA)] solutions was injected rapidly into
tion adaptability. To be notable, EL emission with inter-ALN major  the lead halide (PbX;, e.g., Pbl,) precursor solutions with ligands
peaks has never been observed in these LEDs. In contrast, the EL  oleic acid (OA) and oleylamine (OM) at 70° to 120°C, followed by
peak of the reference conventional bulk quasi-2D PEA;MA,Pbsl;y  immediate flash evaporation of the polar solvent via the Schlenk
[phenethylammonium (PEA)] is not specific/fixed and varies be-  line connected with a vacuum pump. This method is widely appli-
tween n = 6 and 7 within 686 and 724 nm in different batches even  cable to prepare all APbX; perovskite NMs with high photolumi-
prepared from the same composition precursor solutions (fig. S3F).  nescence quantum efficiency (PLQE; tables S3 and S4 and figs. S8
Moreover, these NP LEDs demonstrate sharp EL with full width at ~and S9). The NPs were separated and then followed a different
half maximum (FWHM) of 29 to 43 nm, which is sharper than the =~ washing process using pure ethyl acetate (EtOAc) for different ALN
conventional quasi-2D perovskite LEDs (61 nm). These MAPbI;  LEDs. The method of tailoring different ALN emission of MAPbI;
NPs were prepared by a newly proposed flash-evaporating polar sol- NP LEDs majorly relies on (i) n-phase distribution control via using
vent (FEPS) method, and the corresponding NP films in these LEDs  solvents with different polarity in the FEPS synthesis process and
are optimized to ~10-nm thick (fig. S4) with a roughness of 2.48 to  the following postwashing process and (ii) CT variation relying on
3.54 nm (figs. S5 and S6), while the reference bulk quasi-2D film is  conductivity adjusted via the surface ligands/Pb ratio during the

~30-nm thick with a roughness of 3.03 nm (fig. S7). washing process.
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Fig. 1. MAPbI; NP LEDs with different ALN emission. (A) MAPbl; NP LEDs with structure: ITO/PEDOT:PSS/poly-TPD/TFB/MAPbI; NPs (~10 nm)/TPBi/Lig/Al. ITO, indium tin
oxide; PEDOT:PSS, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate; poly-TPD, poly[N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)-benzidine]; TFB, poly[(9,9-dioctylfluorenyl-
2,7-diyl)-co-(4,4'-(N-(p-butylphenyl))diphenylamine)]; TPBi, 2,2’,2"-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole); Lig, lithium 8-hydroxyquinolinolate. (B) Energy band
schematic of LEDs with n =3, 4, 5, and >7 ALN emission. (C) EL spectra of LEDs with tailored n = 3, 4, 5, and >7 ALN emission; NPs were prepared by MeOH for n = 3 [marked as
MeOH, = 3)], EtOH, n-BuOH, and IPA for n = 4 [marked as EtOH; = 4), n-BUOH, = 4, and IPA(, — 4)], EtOH with further washing and less ligands for n = 5 [marked as EtOH, = 5)], and
n-BuOH with further washing and less ligands for n > 7 [marked as n-BuOH, > 7] emission, correspondingly. The inserted image is the working MAPbI; NP LED prepared by
EtOH» = 5 at 6 V. (D) Schematic of the setup and synthesis process of APbX; (e.g., MAPbI3) NPs via the FEPS method, LN,, and liquid N». The polarity of solvents is defined by
relative polarity to water (1.000), and the relative polarity of alcohols used is MeOH (0.762) > EtOH (0.654) > n-BuOH (0.586) > IPA (0.546) (67). Detailed data are in table S4.
(E) Transmission electron microscopy (TEM) image of MAPbI; NPs prepared by n-BuOH. (F) Schematic of crystal structures of n = 1 to 8 MAPbl; NPs terminated with protonated
oleylamine, C;gH3sNH3™ (OM™), and deprotonated oleic acid, C1gHzsCOO™(OA™). a.u., arbitrary units.
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Table 1. Performance parameters and stability test results of MAPbI; NP LEDs. The numbers of LEDs for EQE,y.r. are shown in Fig. 3C. Average T is based
on three devices tested at 1.0 mA cm 2. Aver., average; max, maximum; Lmax, maximum luminance; PF.yax, maximum photon flux.

NPs Major EL ALN Major peak FWHM (nm) EQE.yer. (%) EQEmax.(%) P.F.Max,_?hg; Lmax. (cdm™2)  Aver. Ts_gat !.0
(nm) ton-(sr”'s™ ) mA cm™“ (min)
MeOH, - 3 3 607 29 74+18 11.3 8.84% 10" 225%10° 11+3
EtOH (4 R 638 VR 158431 213 222x10% 222%10° 2+
n-BuOH(, - 4 4 638 3 214518 %7 9.21x 10" 818x 10> 88+3
PA@ 2 VN 638 50 197417 251 632% 10" 583%10° 1M0+25
EtOH(,_s) 5 669 2 27420 28 130x 101 446%x102 252451
n-BuOH(, > 7) >7 728 FER 83125 136 850% 100 713x100 267+42

n-Phase distribution and surface composition
In most cases of MAPbI; NPs prepared by the FEPS method, mul-
tiple ALN components were observed. Transmission electron mi-
croscopy (TEM) images (Fig. 1E and fig. S10) show that the MAPbI;
NPs have a rectangle plate-like shape with a length/width of >10 nm
and a lateral thickness of ~2 to 6 nm. Multiple specific components
at ~550, 580, 610, 640, 670, 700, 730, and 765 nm in the PL of MAP-
bl; NP solutions/films (figs. S2 and S11 to S15) correspond to the
NPs with defined thicknesses of 1, 2, 3, 4, 5, 6, 7, and >8 ALN [Pbl,]
(Fig. 1F). The surface of NPs is terminated with protonated OM
(C1sH35NH;*, OM™) and deprotonated OA (CisH35C0O0~, OA”)
(48) as proved by proton nuclear magnetic resonance (*H-NMR;
Fig. 2A and fig. S16) and x-ray photoemission spectroscopy (XPS;
Fig. 2, B and C, and fig. S17) analysis. We note that the simplified
“MAPDbI;” is used to represent the NPs whose formula should be
(OM)ZMAn—lenI3n + 1—xOAx~

An average [n] was defined as the cumulative weight of different
n-phases to describe the overall n-phase distribution and make the
distribution trend and the comparison between real [n], [n] in PL,
and [n] in EL more intuitive. The difference of real [n], [#] in PL,
and [n] in EL indicates the carrier/energy transfer dynamics under
optical and electrical excitations. The real n-phase distribution/real
[n] was estimated from the atomic force microscopy (AFM) height
statistics results (Fig. 2, D to G, and fig. S18). MAPbI; NPs prepared
by MeOH show real [n] = 3.19 and a typical height of ~3 nm ma-
jorly from n = 3 to 4 ALN NPs, while MAPbI; NPs prepared by
EtOH, n-BuOH, and IPA show the increasing [n] = 4.05 to 4.38 and
the height between ~2 and 6 nm from #n = 2 to >8 ALN NPs. The
excitonic absorption features corresponding to different ALN NPs
were observed in ultraviolet-visible (UV-vis) absorption spectra of
NP solutions (fig. S19). Diffraction patterns from small n are obvi-
ously higher in MAPbI; NPs prepared by MeOH than those pre-
pared by EtOH, IPA, and #-BuOH in x-ray diffraction (XRD; fig.
$20). Both the real [n] via AFM (3.19 to 4.38) and [n] in PL (3.28 to
6.46) of NP films shift monotonously to larger values with the de-
creasing polarity from MeOH to IPA (Fig. 2, G to I; figs. S11 to S15
and S21 to S23; and table S5). These results demonstrate that the »-
phase distribution was modulated by applying polar solvents with
different polarity. The reason can be ascribed to that weaker hydro-
gen bond, and other intermolecular interactions (proved by NMR in
fig. S24 and solubility of MAI in different alcohols is shown in fig.
$22 and table S5) between [Pbl,] skeleton, MA*, and alcohols with
smaller polarity mean the weaker ability to dissolve [Pbl4] skeleton
for the assembly process of MA™ and I” ions to form the perovskite
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flakes and lastly to produce more large n components. The posttreat-
ment further changed the n-phase distribution (Fig. 2G and fig.
S18). As for n = 5 NPs, the additional one-time washing process
caused the real [n] to slightly shift from 4.05 to 4.33 as proved by
AFM. As for n > 7 NPs, additional three times washing processes of
EtOAc caused obvious aggregation/merging of NPs with the real [n]
shifting from the normal n-BuOH NP [n] = 4.23 to 5.91.

Performance and stability of LEDs
Both PLQE of NP solutions and films and EQE of LEDs showed a
“volcanic” shape distribution from MeOH, = 3) to n-BuOH(, » 7
(Fig. 3, A to C; table S6; and data S1). Results of photon outcoupling
models prove that this optimized LED structure supports ~34%
EQE at most (>25% EQE with ~70% PLQE) with ~10-nm emitting
layer (Fig. 3B) (49). As shown in Fig. 3 (C to E), figs. S25 and S26,
and Table 1, n = 3 at 607 nm LEDs prepared by MeOH show a peak
EQE of 11.3% (average, 7.4 + 1.8%) with sharp EL spectra, and this
wavelength is near edge of the orange/red spectrum and means a
higher photopic luminance (2.25 X 10° cd m™~?). The LEDs for 1 = 4
emission at 638 nm prepared by #-BuOH show a peak EQE of 26.7%
(average, 21.4 + 1.8%) with a maximum luminance of 8.18 X 10%cd
m™2 which could be further improved to 4.33 x 10° cd m™* with a
peak EQE of 21.1% (fig. S26). These LEDs reach the peak EQE be-
tween ~0.01 and 0.02 mA cm ™2 with a luminance of ~2 to 4 cd m™2,
and it remains >25, >20, and >10% at ~0.02, ~0.1-0.2, and ~3 mA
cm ™2 with luminance of ~4, ~20, and ~200 cd m ™2, correspondingly.
The EtOH, = 5y LEDs for n = 5 at 669 nm achieved the highest effi-
ciency with the peak EQE of 26.8% (average, 22.7 + 2.0%), and EQE
remains >25% at 0.023 mA cm 2, >20% at 0.40 mA cm 2, and >10%
at 8.35 mA cm ™2 EL emission of n-BuOH, » 7) LEDs shifted to
n > 7 at ~728 nm with a peak EQE of 13.6% (average, 8.3 + 2.5%).
Angle-dependent EL measurement (Fig. 3F) reveals that the radia-
tion distribution of these NP-based LEDs is Lambertian. The lumi-
nance of these MAPbI; NP LEDs demonstrates an obvious decreasing
trend with EL from an increasing »n value due to the decreasing
photopic sensitivity, which can be further improved ~8 times at
most to the highest one of 4.62 X 10° cd m ™ by increasing the thick-
ness of NP layer and reducing the thickness of CT layers (fig. S26).
The operational stability and color stability of these perovskite
NP-based LEDs were also studied in ambient air at a current density
of 1.0 mA cm™ (Fig. 3G and Table 1). The average operating half-
lifetime (T, the time that the original luminance is halved) of LEDs
showed obvious relevance with the n values. The stability of n = 3
LEDs is the worst with T5y of only 11 + 3 min. The n = 4 LEDs
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Fig. 2. Surface composition and n-phase distribution of MAPbI; NPs and LEDs. (A) "H-NMR of MAPbl; NP solutions prepared by n-BuOH and dispersing NPs in deuter-
ated toluene (T-dg, CsDsCDs, toluene-dg). (B) XPS, N 1s {N from MA™ [binding energy (BE), 401.5 eV] and OM* [BE, 399.7 eV1}. (C) XPS, O 1s [O from Si-O of the substrate and
O from O-Pb (OA)] of MAPbI; NPs prepared by MeOH; spin-coated on a silicon wafer with silica layer; more data are in fig. S17. (D) AFM image with a dashed line of a dis-
continuous film for height and n-phase distribution test of NPs. (E) Height along the dashed line. (F) AFM height statistics result of MAPbl3 NPs synthesized by n-BuOH, and
AFM samples were prepared by spin coating diluted NP solutions (0.5 mg mI~') on a silicon wafer to form a discontinuous film (not for a roughness test). (G) Real [n] and
real n-phase ratio distribution of NPs via AFM; more data are in fig. S18. (H) [n] in PL and ratio of different n-phases from the fitting results of PL of NP films. (I) [n] in EL
and ratio of different n-phases from the fitting results of EL of LEDs; fitting details are in fig. S2. The average [n] is defined as [n] = Zi:1 R,n, R, is the ratio (%) of n-phases.
Figure 2 (G to I) is from the same group of NPs, NP films, and LED samples. ppm, parts per million.

showed similar T5y of ~100 min. The n = 5 and n > 7 LEDs showed
the best stability with the longest Tsy of 267 + 42 min. These LEDs
demonstrate improved stability compared with previous MA-based
NP/QD LEDs in which MAPbI; is generally thought to be less stable
because of a volatile organic MA component (comparison is in table
S1). These pure halide MAPbI; NP LEDs also demonstrate high
color stability without observable EL peak shift during the same sta-
bility test (fig. S27).

PL-EL difference

As shown in fig. S3 (E and F), EL and PL spectra of the bulk quasi-2D
system fabricated from the precursor solutions with a stoichiometric
ratio of nominal n = 3 PEA;MA,Pb;I; are very similar. However,

Wang et al., Sci. Adv. 11, eadp9595 (2025) 14 February 2025

both its EL and PL red shift from the stoichiometric ratio of n = 3
(~610 nm) to n = 6 to 7 with unfixed inter-ALN peaks between 686
and 724 nm. This shift can be ascribed to the energy/charge funnel-
ing which cascades energy/charge along the “ladder-like” energy lev-
els, and the emission ultimately accumulates to the large n with the
narrowest bandgap (45, 50, 51). In contrast, the situation is quite dif-
ferent in MAPbI; NP LEDs. The overall trend demonstrated in Fig. 2
(G to 1) is that real [n] via AFM < [n] in EL < [n] in PL. A much
higher ratio of photons emits from small # rather than large n NPs in
EL, making the EL of these NP LEDs always blue-shifted (the largest,
89 nm) compared to the PL of its counterpart NP films/solutions
(Fig. 2, H and 1, and figs. S2 and S21). To the best of our knowledge,
such a huge PL-EL difference has never been observed before in the
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Fig. 3. Performance of MAPbI; NP LEDs with tailored ALN emission. NPs were prepared by MeOH, = 3), EtOH, = 4), n-BUOH, = 4), IPA(y = 4), EtOH(, = 5), and n-BuOH, » 7,
correspondingly. (A) PLQE of NP solutions and films, average value of three to five time tests, detailed data in table S6. (B) Optical simulation of LEDs with different thick-
ness perovskite NP layers. (C) EQE distribution of MAPbI; NP LEDs obtained from 34, 46, 62, 55, 67, and 38 devices, correspondingly. (D) EQE-current density curves of the
most efficient LEDs. (E) Current density-voltage (J-V) and luminance-voltage curves of NP LEDs. (F) Angle-dependent EL of NP LEDs and ideal Lambertian profile. (G) Stabil-
ity test of LEDs at 1.0 mA cm™2 with average original peak EQE = 7.1, 17.4, 22.1, 23.9, 21.5, and 7.9% and initial luminance of 132.5,99.3, 82.1, 41.8,95.2, and 8.6 cd m™2,
correspondingly; the curves are obtained by averaging results of three devices at each condition to reduce deviation. L/Lo, real-time luminance (L)/original luminance (Lo).

optoelectronic field. This big PL-EL difference in this NP system in-
dicates that the energy transfer routes are different under optical and
electrical excitations, and the carrier dynamics of these NP systems is
also very different from conventional bulk quasi-2D perovskites.

Carrier dynamics and photophysics

Ultraviolet photoelectron spectroscopy (UPS; Fig. 4A and fig. S28)
and density functional theory (DFT) calculations (Fig. 4B) were car-
ried out and prove that the decreasing bandgap mainly arises from
the lowering of the conduction band minima (CBM) levels, while
the valence band maxima (VBM) levels remain almost constant
across the increasing n value. These ladder-like levels can cascade
energy/charge from small to large # NPs. The CT and FRET could be
possible major energy transfer routes in NP and quasi-2D systems
under optical/electrical excitations. NP films can be easily dissolved
in toluene as shown in UV-vis gives intuitive evidence that NPs in
films are much more “isolated” (more soluble) than the bulk quasi-
2D film (Fig. 4C). This “isolation” has a different influence on FRET
and CT (more discussions are in the Supplementary Materials).

Wang et al., Sci. Adv. 11, eadp9595 (2025) 14 February 2025

Combined measurements were used to reveal which route domi-
nates under optical/electrical excitations and the difference between
conventional bulk quasi-2D perovskites and these NPs. The gradu-
ally increasing 7; and 7, components in a time-resolved PL (TRPL)
test demonstrated decreasing recombination rate as the # value in-
creases (Fig. 4D). Transient absorption (TA) spectroscopy provides
information of the fast energy/CT process in a subnanosecond tim-
escale under optical excitation (Fig. 4, E and E, and figs. 529 and
$30), in which the fast decay-rise process at the ~1-ps timescale can
be ascribed to FRET from small to large n NPs and the carriers’
cooling process (52, 53). Following the fast ~1-ps process, the inter-
mediate stage decays with a typical gradually increasing lifetime
from ~20 to ~100 ps as n increases. This intermediate process in the
subnanosecond timescale can be also ascribed to FRET (46). The
rate of FRET in NP films is slightly slower or similar to shorter life-
times compared with the quasi-2D films, because the isolation in
NP films does not obviously change the distance (the size of NPs,
>10 nm) in the FRET process. So the obvious concentrating trend
from small to large n could also be found in the TRPL of NP films,
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Fig. 4. Carrier/energy dynamics of MAPbI; NPs and comparison with bulk quasi-2D perovskite. (A) UPS of MAPbI; NPs prepared by MeOH and n-BuOH; more data

arein fig. S28. (B) Energy levels (referenced to the vacuum level) of different ALN MAPbI; NPs by DFT simulations; the inset is the n = 4 model for simulation. (C) UV-vis and

photos of NP film and quasi-2D film before/after washing by toluene. (D) PL decay kinetics (Aexc = 405 nm) with fitted lifetime of MAPDbI; NP solution prepared by n-BuOH,
collected at different wavelengths for n = 3 to >7, respectively. Decay kinetics in TA spectra measurement of (E) NPs and (F) quasi-2D films; more data and fitting results

are in figs. $29 and S30; the excitation fluence for the TA measurement was 5.09 pJ cm ™2 TrEL (0 to 300 ns, turn-on; 300 to 600 ns, turn-off) and TRPL of (G) NPs prepared

by n-BuOH and (H) quasi-2D LEDs/films; more data are in fig. $32. Conductive AFM (C-AFM) of (I) NPs prepared by n-BuOH and (J) quasi-2D films. (K) Correlation of ligand/

Pb ratio (L/Pb), conductivity, average real n-phase ([n] via AFM), and average n-phase in EL ([n] in EL); more details are in fig. S31 and table S7. L/Pb was obtained from XPS
data. (L) Schematic of CT in multi-n-phase NP film with slow charge funneling and quasi-2D film with normal charge funneling. WF, work function.

and the PL of both bulk quasi-2D and NP films is majorly from large

n (Figs. 2H and 4, G and H).

However, the excitation and the following charge/energy transfer
processes are quite different in EL, in which electrons and holes inject
separately from CT layers to perovskite layers. The “separated” injection
of holes and electrons strongly reduces the possibility of FRET. The

Wang et al., Sci. Adv. 11, eadp9595 (2025)
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CT becomes the major energy transfer route in EL. The more isolated
nature of NP films can make the CT from small to large n less efficient

than in the bulk 2D films. The conductivity of films was used to esti-

mate the CT rate. The conductivity of NP films is 0.58 to 2.24 X 10~° S
cm™!, which is much smaller than 9.41 x 10 S cm™ of the bulk

quasi-2D film (fig. S31 and table S7). The tunneling current of NP
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films is only about one-fourth of quai-2D film in the conductive AFM
(C-AFM) test (Fig. 4, I and J). Transient EL (TrEL; Fig. 4, G and H,
and fig. $32) gives further evidence of electronic process difference in
a submicrosecond timescale in these NP LEDs and quasi-2D LEDs
(54). Tyis defined as the delay time from the turn-on of a pulse voltage
to the onset of TrEL, which is related to the CT process (55). The T4
increases from 60 and 80 to 120 ns in n = 4, 5, to >7 NP LEDs, while
the T4 of quasi-2D LEDs is 120 ns. It demonstrates a prolonged CT
process from small to large #n NPs and a slower carrier hole transfer
layer (HTL)/interface injection in large n NPs and quasi-2D LEDs.
The obvious concentrating trend from small to large n could be found
in the TrEL of quasi-2D LEDs with long decay tailing of large n-phase.
In contrast, the decay tailing of TrEL appears in small n due to the
charge funneling via CT being much slower in NP LEDs.

The correlation analysis (Fig. 4K, fig. S31, and table S7) demon-
strates that two factors influence the [#] in EL: (i) The real n-phase
(real [n] via AFM) distribution is the dominating factor and the pre-
requisite of this tailored ALN emission; (ii) the conductivity of the
films, which is inversely correlated with the numbers of ligands (L/
Pb) on the surface. The improved conductivity can shift the [n] in
EL to a larger value (Fig. 2, G to I). Moreover, additional one to two
EL peaks from larger n (fig. S33) appear after the ligand exchange
process, which removes more ligands and benefits the CT (7). All of
the systematic evidence indicates that the CT is the major energy/
CT route in working LEDs, and the slower CT and the low probabil-
ity of FRET block the further shift of EL to a larger n value, resulting
in a big PL-EL difference in the NP system (Fig. 4L). It is also the
prerequisite to achieve fixed/discrete emission in NP LEDs instead
of unfixed inter-ALN emission in quasi-2D LEDs (56).

DISCUSSION

In conclusion, we demonstrated tailored ALN EL in perovskite NP
LEDs and achieved highly efficient and color-stable LEDs with specif-
ic, sharp, and tunable EL. This concept opens up new avenues for
wavelength tunability of emission based on emitters with specific lay-
ers of atoms, which are not susceptible to preparation conditions in
contrast with the size or composition control strategies in convention-
al QDs and perovskites. This work simplifies preparation requirements
and is promising to make the scale production of QDs and its LEDs
easier, cheaper, and more reproducible for the display industry. This
work uses environmentally green precursors and obviates the need of
some presynthesized precursors in the traditional hot injection meth-
od for colloidal perovskite NM preparation. The study of carrier dy-
namics reveals that CT is the major energy transfer route in working
perovskite LEDs, and the slower CT and the low probability of FRET
result in a large blue shift of EL compared to its PL in these NP sys-
tems. This study of carrier dynamics and photophysics also settles the
argument about the energy transfer route via FRET or CT in a multi-
phase system, and this will enlighten the reasonable design of NP LEDs.

MATERIALS AND METHODS

Chemicals

All chemicals were used as received without further purification. CsCl
(99.0%, Sigma-Aldrich), CsBr (99.5%), CsI (99.9%, Sigma-Aldrich),
MA chloride (MACI), MA bromide (MABr), MA iodide (MAI), for-
mamidinium chloride (FACI), formamidinium bromide (FABr), for-
mamidinium jodide (FAI), and phenethylammonium iodide were

Wang et al., Sci. Adv. 11, eadp9595 (2025) 14 February 2025

purchased from Greatcell Solar Materials. PbCl, (99.99%, TCI Chemicals),
PbBr, (99.99%, Aladdin), Pbl, (99.99%, TCI Chemicals) were stored
inN; glovebox. OA (99.0%), OM (70%) octadecene (ODE), EtOAc, MeOH,
EtOH, isopropyl alcohol (IPA), n-butyl alcohol (1-butanol, #-BuOH), tolu-
ene, xylene, deuterated toluene (T-dg, CsDsCD3, toluene-ds), deuterated
ethanol (EtOH-dg, C,D50D), and N,N-dimethylformamide were
anhydrous and purchased from Sigma-Aldrich. The following chemicals
were also used: poly(3,4-ethylenedioxythiophene) polystyrene sulfonate
(PEDOT:PSS; Ossila), poly[N,N’-bis(4-butylphenyl)-N,N’-bis(phenyl)-
benzidine] (poly-TPD; American Dye Source), poly[(9,9-dioctylfluorenyl-
2,7-diyl)-co-(4,4’-(N-(p-butylphenyl))diphenylamine)] (TFB; American
Dye Source), 2,2',2"-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimid-
azole) (TPBi; Ossila), and lithium 8-hydroxyquinolinolate (Liq; Ossila).

Synthesis of APbX; perovskite NPs

All perovskite NPs were synthesized via a standard Schlenk line
with a vacuum pump under ambient conditions in a fume hood at
both Peking University and the University of Cambridge. As shown
in Fig. 1D and table S3, APbX; NPs were synthesized as follows:
Lead halide (PbX,; 1.0 mmol) was added into a three-neck round
bottom flask (100 ml), and then a certain amount of OA, OM, and
ODE was added into the flask. The solutions were degassed at 120°C
until PbX, completely dissolved and bubbles no longer emerged by
using the Schlenk line. At the same time, 1.0 mmol of CsX (CsCl,
CsBr, CsI), MAX (MACI, MABr, MAI), and FAX (FACI, FABr, FAI)
precursors was dissolved in corresponding polar solvents with
heating and then cooled down to room temperature. The PbX, pre-
cursor solutions were cooled down to a certain temperature (70° to
120°C) for injection. AX precursor solutions were injected into
PbX, precursor solutions with fast stirring. Then, polar solvents
were removed immediately by the Schlenk line until bubbles no lon-
ger emerged to ensure the complete removal of polar solvents. NPs
were separated from the crude solutions by centrifugation at 14,000 rpm
and then washed with toluene, EtOAc, etc. The NPs prepared by
MeOH for n = 3 ALN emission and normal EtOH, n-BuOH, and
IPA MAPDI; for n = 4 ALN emission NP solutions (2.0 mg ml™)
were washed once by EtOAc, and the EtOH(, = 5) NP solution for
n =5 ALN emission at 670 NP LEDs was prepared from the same
solution of the normal EtOH sample with an additional washing
process of EtOAc. The n-BuOH(, » 7y NP sample for n > 7 ALN
emission at 728 NP LEDs was prepared from the normal n-BuOH
NP solution with additional three times washing processes of EtOAc.
NPs were redispersed in toluene, and large particles were removed
by subsequent centrifugation and filtering. The concentration of NP
solutions was measured by UV-vis absorption spectrometry, and
then solutions were diluted to 2.0 mg ml™" for LED preparation.
This synthesis method was cross-checked and repeated dozens of
times by different authors both at the University of Cambridge and
Peking University.

Fabrication of MAPbI3; NP LEDs

All MAPbI; NP LEDs were prepared in the Optoelectronics Group
of Cavendish Laboratory, University of Cambridge. Indium tin ox-
ide (ITO) substrates were cleaned by an ultrasonification process in
deionized water, acetone, and IPA for 10 min. After the 10-min
plasma treatment, PEDOT:PSS was spin-coated onto ITO substrates
at 4000 rpm for 40 s, followed by an annealing process at 150°C for
10 min. Poly-TPD solution (10 mg ml™" in chlorobenzene) and TFB
solution (10 mg ml™", in xylene) were sequentially spin-coated onto
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the substrates at 4000 rpm for 40 s and annealed at 150°C for 10 min.
The MAPbI; NP (2.0 mg ml™}) solutions were spin-coated onto the
substrates at 2000 rpm for 30 s in an N,-filled glove box. TPBi (110 nm),
Liq (1 nm), and Al (100 nm) were sequentially deposited using a
thermal evaporation system. For the LEDs with high luminance, the
concentration of NP solutions was increased to 4.0 mg ml™" for the
thicker emission layer, the concentration of poly-TPD and TFB solu-
tion was reduced to 6 mg ml™", and the thickness of TPBi was reduced
to 60 nm. LEDs were encapsulated with glass in the glove box.

DFT calculations

All DFT calculations were carried out using the Quantum Espresso
suite (v7.0) (57, 58). Perdew-Burke-Ernzerhof functional was used
to approximate the exchange correlation (59), and the ultrasoft
pseudopotentials from the GBRV library were used to treat the
core-valence interactions (60). The electronic wave functions
were expanded in a plane wave basis with a charge density cutoft
of 200 rydberg (Ry) and a cutoff of 40 Ry, and the dispersion correc-
tion was included empirically using the DFT-D3 method (61). The
Brillouin zone was sampled with a I'-centered Monkhorst-Pack
k-point grid of 6 X 6 X 6 (62). The atoms are relaxed until the
Hellman-Feynman force converges below 0.01 eV A™', and the bulk
volume is relaxed until all components of the stress tensor are below
1072 GPa. For the n-layered perovskites, a vacuum spacing of 20 A
was added to the supercell in the z direction to remove any spurious
interactions, and a commensurate 6 X 6 X 1 k-point grid was used.
A saw-like potential simulating an electric field was added to the
bare ionic potential, to correct for the dipole moment in the z direc-
tion induced by the polar MA™ ion. We note that the bandgap of the
perovskites is lower than experimentally measured values, due to
the well-known underestimation of semiconductor bandgaps by
DFT, but the trend observed here is valid. From a molecular orbital
perspective, the VBM of the perovskites is dominated by the anti-
bonding orbitals of Pb 6s and I 5p at the R point in the Brillouin
zone. The spherical symmetry of the Pb 6s orbital and the complete
number of Pbls octahedral in these layered perovskites ensure
that the VBM energies are not affected by the surface termination.
For CBM on the other hand, it is mainly composed of the Pb 6p
orbitals. The surface termination breaks the symmetry of the 6p
orbitals, as those that lie in parallel in the xy (6p, and 6p,) plane are
in a different energy than the 6p, orbitals. Therefore, the quantum
confinement effect in the z direction is mainly manifested by the
splitting of the orbital energies. This in turn means that the position
of the CBM lowers in energy, as the number of perovskite layers
increases, weakening the quantum confinement effects and the
energy splitting in the p orbitals (63-66).
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