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Abstract
Assessing experimentally the main optical parameters of graphene (e.g. complex refractive index,
carrier density, mobility) in the far-infrared (0.1–10 THz) is important for quantum science, due
to the possibility to devise miniaturized devices (frequency combs, random lasers), components
(optical switches, spatial light modulators, metamaterial mirrors and modulators) or photonic
circuits, in which graphene can be integrated with existing semiconductor technologies to
manipulate their optical properties and induce novel functionalities. Here, we combine time
domain terahertz (THz) spectroscopy and Fourier transform infrared spectroscopy to extract the
complex refractive index of large (∼1cm2) area single layer graphene on thin (∼0.1-1 µm)
polymeric suspended substrates, flexible and transparent films, and high reflectivity Si substrates in
the 0.4–1.8 THz range. We model our data to extract the relevant optical (refractive index,
absorption coefficient, penetration length) electronic (Fermi velocity) and electrical (carrier
density, mobility) properties of the different graphene samples.

1. Introduction

The mechanical [1], thermal [2, 3], electronic [4]
and optical properties [5] of single layer graphene
(SLG) have been thoroughly investigated [6]. Its
excellent transport and optical characteristics and its
atomic layer thickness can be exploited to develop
novel device architectures, such as flexible electronic
devices with high (up to 105cm2/Vs) mobilities [7],
spintronic devices [8], broadband optical modulat-
ors [9] and super-capacitors for energy storage [10],
among others [11–13] Its ultra-high mobility (70000
cm2/Vs at room temperature and 120000 cm2/Vs
at 9K)[14] is attractive for the realization of opto-
electronic and photonic devices across the infrared
[15–17]. In the terahertz (THz) (0.1–10 THz) or far-
infrared (0.3–30 THz), graphene was used to prepare
emitters [18], photo-detectors [19] and modulators
[20, 21, 22, 23]. Engineering graphene- or hybrid
semiconductor-graphene-photonic devices requires
a precise knowledge of its core optical parameters.

While SLG has been widely investigated in the vis-
ible (380–750 nm) [5] and near infrared (780–
2500 nm) [24], a detailed determination of its
substrate-dependent [25–28] optical properties at
THz frequencies is still lacking and has not been per-
formed on substrates which can be fundamental to
THz technologies, such as polycarbonate (PC) [29]
and polymethylmethacrylate (PMMA) [29].

Large (∼1cm2) area chemical vapor deposition
(CVD) graphene on flexible and transparent films is
promising for optoelectronic applications for wear-
able devices in the visible and IR [6, 15, 30, 31]. This
also raises the interest into the fundamental optical
properties of large area SLG deposited onto polymers
such as PC and PMMA .

The most commonly adopted technique to probe
the optical response of materials to THz radi-
ation is time-domain spectroscopy [32] (THz-TDS),
which provides detailed information with sub-ps
resolution [33]. The optical properties of SLG and
multi-layer graphene on many different substrates
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were previously investigated by THz-TDS [28, 34–
40] to retrieve the complex optical conductivity, a key
parameter to determine other fundamental proper-
ties, such as carrier density, scattering time, mobility
and refractive index. The real and imaginary part of
the refractive index of SLG on SiO2/Si, to the best of
our knowledge, has been only reported in the sub-
THz range [41], but not supported by information
about the used SLG morphological, structural and
optical properties. A systematic study, comprehensive
of a complete SLG characterization, is therefore neces-
sary.

Here we report the frequency dependent com-
plex refractive index of SLG grown by CVD and
transferred on PC, PMMA and a 500 µm thick,
high resistivity (HR, ∼10 kΩ × µm), double side
polished Si with 285 nm SiO2 on both sides. We
use a combination of THz-TDS, for 0.4–1.8 THz,
and Fourier transform infrared spectroscopy (FTIR),
for 1.5–20 THz, to extract the relevant optical
(refractive index, absorption coefficient, penetra-
tion length), electronic (Fermi velocity) and elec-
trical (carrier density, mobility) properties of the dif-
ferent graphene samples across the THz frequency
range.

2. Materials andmethods

We use three SLG samples grown by CVD on
Cu. These are then transferred by electrochemical
delamination in a 1 M NaOH aqueous solution. The
1st substrate (A) is 500 µm, double side polished,
slightly doped (resistivity∼10 kΩ× µm) HR Si with
285 nm SiO2 on both sides. The 2nd (B) and the 3rd
(C) are 2.9± 0.1 µm thick PC and 166± 25 nm thick
PMMA, spin coated on SLG/Cu as the supporting
layer for SLG transfer. SLG/PC and SLG/PMMA with
1.6± 0.1 µm and 229± 27 nm thickness are suspen-
ded onto a frame of∼100µmthick polyvinyl chloride
with 1.2 cm× 1.2 cm holes at the centre (figure 1(a)).
Identical substrates without SLG are used as a ref-
erence. Optical images of the three samples, with
SEM and AFM images of sample A, are reported
in the supplementary information (available online
at stacks.iop.org/TDM/9/025018/mmedia). All thick-
nesses aremeasuredwith a Stylus Profilometer (DEK-
TAK XT from Bruker).

As grown and transferred SLG are character-
ized by Raman spectroscopy with a Renishaw InVia
Raman spectrometer equipped with a 100× object-
ive at 514.5 nm, with power on the sample <0.5 mW
to exclude heating effects. An analysis of three spec-
tra on as grown SLG on Cu, seven on transferred SLG
on SiO2/Si, six on transferred SLG on PC and six on
transferred SLG on PMMA is performed to estimate
doping, strain, and defect density. The errors are cal-
culated from the standard deviation across different
spectra, the spectrometer resolution (∼1 cm−1) and

the uncertainty associated with the different methods
to estimate doping and strain.

Figure 1(b) plots the Raman Spectrum of SLG on
Cu after Cu photoluminescence removal [42]. The
2D peak is a single Lorentzian with FWHM(2D)
∼23 ± 1 cm−1, signature of SLG [43]. The pos-
ition of the G peak, Pos(G), is 1585 ± 2 cm−1,
with FWHM(G) ∼16 ± 2 cm−1. The 2D peak pos-
ition, Pos(2D), is 2703 ± 4 cm−1, while the 2D to
G peak intensity and area ratios, I(2D)/I(G) and
A(2D)/A(G), are ∼3.7 ± 0.4 and 5.6 ± 0.9. No D
peak is observed, indicating negligible Raman act-
ive defects in as grown SLG [44, 45]. The Raman
spectrum of SLG on SiO2/Si is in figure 1(b).
The 2D peak retains its single-Lorentzian line
shape with FWHM(2D) ∼28 ± 2 cm−1. Pos(G)
∼1592 ± 2 cm−1, FWHM(G) ∼9 ± 1 cm−1,
Pos(2D) ∼2691 ± 3 cm−1, I(2D)/I(G) ∼1.6 ± 0.1
and A(2D)/A(G) ∼4.7 ± 0.2 indicating a p dop-
ing with Fermi energy EF ∼300 ± 50 meV [46],
which corresponds to a carrier concentration n
∼5.6 ± 1.5 × 1012 cm−2 [47, 48]. I(D)/I(G)
∼0.01 ± 0.01 corresponds to a defect density
nD ∼2.6 ± 1.5 × 109 cm−2 [46] for excitation
energy 2.41 eV and EF = 300 ± 50 meV. The
Raman spectrum of SLG on PC is in figure 1(b).
The 2D peak retains its single-Lorentzian line
shape with FWHM(2D) ∼33 ± 1 cm−1, Pos(G)
∼1593 ± 1 cm−1, FWHM(G) ∼14 ± 1 cm−1,
Pos(2D) ∼2696 ± 2 cm−1, I(2D)/I(G) ∼3.2 ± 0.5
and A(2D)/A(G) ∼7.8 ± 1.5 indicating a p doping
with EF ∼130 ± 60 meV [46], which corresponds
to n ∼1.1 ± 0.9 × 1012 cm−2 [47, 48]. I(D)/I(G)
∼0.03 ± 0.02 implies nD ∼8.3 ± 3.1 × 109 cm−2

[46] for 2.41 eV and EF ∼130 ± 60 meV. The
Raman spectrum of SLG transferred on PMMA is in
figure 1(b). The 2D peak retains its single-Lorentzian
line shape with FWHM(2D) ∼32 ± 2 cm−1, Pos(G)
∼1589 ± 2 cm−1, FWHM(G) ∼16 ± 1 cm−1,
Pos(2D) ∼2691 ± 2 cm−1, I(2D)/I(G) ∼4.1 ± 0.7
and A(2D)/A(G) ∼8.2 ± 1.4 indicating a p doping
with EF ∼140 ± 30 meV [46], which corresponds
to n ∼1.3 ± 0.4 × 1012 cm−2 [47, 48]. I(D)/I(G)
∼0.04 ± 0.07 indicates nD ∼1.4 ± 0.7 × 1010 cm−2

[46] for 2.41 eV and EF ∼140 ± 30 meV. Pos(G)
and Pos(2D) are also affected by the presence of
strain. For uniaxial (biaxial) strain, Pos(G) shifts
by ∆Pos(G)/∆ε∼23(60) cm−1/% [49–51]. Pos(G)
also depends on doping [47]. The average doping as
derived from A(2D)/A(G), FWHM(G), I(2D)/I(G)
should correspond to Pos(G) ∼1593 ± 2 cm−1 on
SiO2, ∼1584 ± 1 cm−1 on PC, ∼1584 ± 1 cm−1

on PMMA for unstrained SLG [47, 48]. However,
we have Pos(G) ∼1592 ± 2 cm−1 on SiO2, Pos(G)
∼1593± 1 cm−1 on PC, Pos(G)∼1589± 2 cm−1 on
PMMA which implies a contribution from uniaxial
(biaxial) strain 0.02% ± 0.03% (0.05% ± 0.07%)
on SiO2, 0.14% ± 0.01% (0.38% ± 0.04%) on
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Figure 1. (a) Schematic of SLG on PC, PMMA and Si/SiO2. (b) Representative Raman spectra of SLG on Cu, SiO2, PC, PMMA.
(c) Pos(2D) as a function of Pos(G) with linear fitting for each substrate. (d) FWHM(G) as a function of Pos(G). (e) FWHM(2D)
as a function of Pos(G). (f) A(2D)/A(G) as a function of Pos(G).

PC, 0.08% ± 0.04% (0.20% ± 0.10%) on PMMA
[49–51]. Local variations in strain and doping mani-
fest as a spread in Pos(G) and Pos(2D), which
in our samples vary between ∼1589–1593 cm−1

and ∼2686–2694 cm−1 on SiO2, ∼1592–1594
and ∼2691–2698 cm−1 on PC, ∼1586–1592 and
∼2689–2694 cm−1 on PMMA (figures 1(d)–(f)).
In presence of uni-axial (biaxial) strain, and in the
absence of doping,∆Pos(2D)/∆Pos(G)∼2.5 [49, 50,
52]. In our samples ∆Pos(2D)/∆Pos(G) ∼1.8 ± 0.1
on SiO2, ∆Pos(2D)/∆Pos(G) ∼2.2 ± 1.0 on PC,
∆Pos(2D)/∆Pos(G) ∼0.8 ± 0.3 on PMMA which
indicates that the variation of Pos(G) is due to both
doping and strain (figure 1(c)).

3. Results and discussion

Figure 2(a) plots three representative 800 ps time
scans, corresponding to THz transmission through
air (black), with Si reference (blue) and with sample
A (red) collected with a THz TDS system in purged
environment (Tera K5 by MenloSystems).

The inset is a zoom of the scans around the
main pulse and the 1st three echoes related to the
internal reflections. Each echo can be isolated from
its neighbors, and contains the same information car-
ried by the main pulse [53, 54]. Therefore, the latter
can be employed to extract the complex transmittiv-
ity of the SLG [53, 54]. The electric field amplitude

spectra obtained by windowing and then Fourier-
transforming the first-pass of the THz pulse are in
figure 2(b). The reduced spectral amplitude in sample
A, compared to the reference, is due to the SLG intra-
band absorption in the THz range [55]. An analogous
procedure is followed for samples B, C.

The extrapolated TDS transmission spectrum is
then compared with the sample transmittance dir-
ectly measured under vacuum, via FTIR (Bruker,
Vertex 80). As the FTIR lower frequency limit is
50 cm−1, i.e. 1.5 THz, the two curves can be com-
pared (figure 2(c)) to determine the upper frequency
limit of our TDS measurements. This reveals that
the transmittance extracted from THz-TDS diverges
at ∼2 THz, meaning that the low amplitude of the
THz electric field emitted by the antenna above that
frequency significantly increases the uncertainty of
the associated measurements. The same happens on
the low frequency side, being the noise significant
(SNR < 1) below 0.2 THz. Therefore, a conservat-
ive choice is to limit our analysis to the 0.4–1.8 THz
range.

The FTIR transmittances of SLG onto PC (sample
B) and PMMA (sample C) are shown in figure 2(c)
(blue and green curves). These indicate a lower trans-
parency at all frequencies compared to the Si case.
This can be attributed to the thicker reference sub-
strates than those used for SLG transfer, which intro-
duce additional losses. The transport properties of

3
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Figure 2. (a) THz-TDS time traces measured without sample (black), with Si reference (blue) and with SLG (red). Inset: zoom of
the time traces around the transmitted pulses. (b) Spectra of the electric field associated with the main THz pulse of (a).
(c) Comparison between SLG transmittance measured with THz-TDS (black) and with FTIR (red). The FTIR transmittances
measured through SLG on PC (sample B) and PMMA (sample C) are in blue and green, respectively.

SLG are also affected by its interaction with the sub-
strate through e.g. topographic corrugations [27],
electron-density inhomogeneities [26] and interfacial
phonon modes [25], which can also explain the dif-
ferent THz transmittance. Since the transmittance of
samples B and C is still similar, we can expect to
find the greatest difference in the optical conductiv-
ity between these two samples and sample A.

From the spectral amplitude ratio and phase dif-
ference of the Fourier-transformed time traces for
sample A and the related reference (figure 2(a)),
we retrieve the complex optical conductivity via the
Tinkham formula [57]:

σ̃g (ω) =
{
[ñSubs (ω)+ 1]

[
1/T̃(ω)− 1

]}
/Z0 (1)

where ñSubs (ω) is the complex refractive index of
the SiO2 substrate [58], T̃(ω) = Ẽg (ω)/ẼRef (ω) is the
complex transmittivity of SLG i.e. the ratio between
the complex electric field spectra of SLG, Ẽg (ω), and
the reference, ẼRef (ω). Z0 = 376.73Ω is the imped-
ance of free space.

We use a different approach to investigate the
optical properties of SLG on PC and PMMA. The
electric field time traces for samples B and C

(figure 3(a)) show that echoes cannot be separated
from the first-pass, since the time between internal
reflections in the substrate is comparable with the
pulse duration. The limited absorption occurring in
the very thin (1.6 µm and 229 nm respectively) sub-
strates of samples B and C introduces only small vari-
ations in the electric field amplitude of the trans-
mitted pulses, which consequently appear very sim-
ilar. The spectral amplitudes of the electric field
(figure 3(b)) for bare and SLG-covered samples con-
tain the information of all the multiple reflections of
the THz radiation at the sample interfaces. There-
fore, we need to account for the contributions of all
internal reflections to the THz transmittivity, leading
to a modified expression for the conductivity of SLG
on an optically thin substrate [59]:

σ̃g (ω) =

{
[ñSubs (ω)+ 1]2+ [ñSubs (ω)− 1]2e−iδ

}
{
[ñSubs (ω)+ 1] + [ñSubs (ω)− 1]2e−iδ

}
×

[
1/T̃(ω)− 1

]
Z0

(2)

where δ = dSubsnSubsω/c is the phase shift between
subsequent reflections, dSubs the substrate thickness

4
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Figure 3. (a) Top panel: THz-TDS time traces for (blue) PC bare substrate and (red) SLG on PC (sample B). Bottom panel:
THz-TDS time traces measured for (purple) PMMA bare substrate and (green) SLG on PMMA (sample C). (b) Spectra of electric
field obtained by Fourier-transforming the time traces in (a). (c) Real (top panel) and imaginary (bottom panel) parts of the
refractive indexes of HR-Si (blue curve), PC (red curve) and PMMA (green curve) as from [29, 56].

and nSubs its refractive index. Since both references
and samples B and C have different thicknesses, such
a thickness discrepancy must be considered in the
transmittivity amplitude and phase. The refractive
indexes of the individual substrates in figure 3(c) are
taken from Ref. [56] for high reflectivity silicon and
from Ref. [29] for PC and PMMA.

The real (blue) and imaginary (orange) parts of
the optical conductivity of SLGon different substrates
is in figures 4(a)–(c) (solid lines) together with a
Drude model fit [54, 60], then used to determine the
scattering time, τ , and the DC sheet conductivity,
σDC. We get σDC ∼2.10 mS and τ ∼103 fs for sample
A, σDC ∼1.50 mS and τ ∼51 fs for sample B and σDC
∼0.84 mS and τ ∼58 fs for sample C. The Drude
model well reproduces the experimental data, with
an almost perfect agreement for thinner substrates.
This is expected since the substrate contribution of
the polymeric films to T̃(ω) is much lower than that
associated with the thick Si substrate, hence reducing

the errors related to substrate thickness determina-
tion or angular tilt [61].

The SLG complex permittivity ε̃g (ω) can then be
obtained from:

ε̃g (ω) = 1−
iσ̃g (ω)(
ωε0dg

) (3)

where ε0 is the dielectric constant of vacuum
and dg is the SLG thickness, 0.335 nm [62].
Since Re

[
ñg (ω) ]+i× Im[ ñg (ω)

]
=
√
ε̃g (ω), the

SLG complex refractive index is then retrieved.
Figures 4(d)–(f) displays the real (blue) and the ima-
ginary (red) parts of the SLG refractive index with the
corresponding Drude model fit (dashed lines). The
SLG absorption coefficient and penetration depth are
given by:

µa,g (ω) = 2
ℑ
[
ñg (ω)

]
ω

c
(4)
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Figure 4. (a)–(c) Real (blue) and imaginary (orange) parts of the optical conductivity for samples (a) A (SLG on Si ), (b) B (SLG
on PC), (c) C (SLG on PMMA) (from top to bottom). Dashed lines represent the fitting with the Drude model. (d)–(f) Real
(blue) and imaginary (orange) parts of the refractive index of samples (d) A, (e) B, (f) C, corresponding to the conductivities in
(a)–(c). (g)–(i) Absorption coefficient (blue) and penetration depth (orange) for samples (g) A, (h) B, (i) C.

δg =
1

µa,g (ω)
(5)

displayed in figure 4(c), together with the corres-
ponding fitting traces.

The complex refractive indexes show a similar
behavior for samples B andC, both lower than sample
A, with a smaller absolute decrease at higher frequen-
cies, in agreement with the trend observed from the
FTIR spectra. This also confirms that the SLG interac-
tion with the substrate plays a key role in determining
its optical properties at THz frequencies and must be
taken into account in the design of SLG-based devices
as, e.g. the absorption coefficient can change over
factor 2 (see figures 1(g) and (i)) as a consequence of
the electron-density inhomogeneities [26] and inter-
facial phonon modes [25], as confirmed by previous
theoretical and experimental reports on SiO2 [26, 63],
Pt [64] and Cu [65] substrates.

The carrier density, mobility and Fermi velocity
can also be derived from the optical conductivity.
In order to account for electron–electron interac-
tions, the Fermi velocity must be renormalized before
extracting the other properties [40, 66]. We follow
Ref. [40] to compute the renormalized Fermi velocity,

together with carrier density andmobility.We use the
relative permittivity of the substrate at 1 THz, which
is a good approximation given the small dispersion of
the refractive indexes of the substrate materials in the
considered frequency range (figure 3(c)). The result-
ing renormalized Fermi velocity vF∗, n, and mobility
µ are in table 1.

The n values extracted from TDS measurements
and Raman measurements show a discrepancy that
ranges from 27% (sample C) to 73% (sample A).
This is an effect of the renormalization of the Fermi
velocity and of the dissimilar experimental condi-
tions: while TDS experiments are performed in a
purged controlled atmosphere, the Raman spectra
are collected while keeping the samples in air, result-
ing in a different refractive index of the surrounding
media.

The effect of the substrate onto the SLG elec-
tric characteristics was investigated in Ref. [28]. This
showed that µ is mostly affected by n via substrate-
induced charge doping, whereas τ is mostly unaf-
fected by the substrate. Our findings confirm this
conclusion as both sample B and C have similar
τ = 51 fs and τ = 58 fs, yet the mobility changes by
more than a factor 2 and the carrier concentration is

6
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Table 1. Renormalized vF∗, ng and µg for samples A–C.

Sample vF
∗ n µ n (Raman)

A 1.21× 106 m s−1 1.50× 1012 cm−2 8733 cm2 V−1 s−1 5.6± 1.5× 1012 cm−2

B 1.22× 106 m s−1 3.07× 1012 cm−2 3050 cm2 V−1 s−1 1.1± 0.9× 1012 cm−2

C 1.30× 106 m s−1 6.57× 1011 cm−2 7977 cm2 V−1 s−1 1.3± 0.4× 1012 cm−2

∼4.7 higher for sample B. n in sample C is a factor
of 2.3 lower than A, in contrast with the significant
(>2) increase reported in Ref. [28]. This can be at
least in part attributed to the VF = 1.1 × 106 m s−1

used in Ref. [28], that did not consider the role of
electron–electron interactions. In our case, using a
constant VF = 1.1 × 106 m s−1 would have led to
a 21% and 40% higher carrier density for samples A
and C, respectively, than that obtained through the
renormalization. This is particularly significant for
substrates with low (<2.5) relative permittivity [40].

4. Conclusions

We reported the frequency dependent complex
refractive index of SLG deposited on a thick (500 µm)
HR SiO2/Si and onto two thin (1.6 µm and 229 nm)
polymeric films of PC and PMMA, in a frequency
range 0.4–1.8 THz. Our experimental data allowed
us to retrieve all relevant optical (refractive index,
absorption coefficient, penetration length) electronic
(Fermi velocity) and electrical (carrier density,mobil-
ity) properties of the different graphene samples, in
the terahertz. Assessing experimentally the optical
parameters for graphene layers on large (∼1cm2)
area polymeric films is of interest for the develop-
ment of graphene-based wearable optoelectronic or
miniaturized quantum photonic devices, such as fre-
quency combs [67] or low spatial coherence random
lasers [68].
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